

TAO ZHONG

taozhong.info tzhong@princeton.edu linkedin.com/in/neiltaozhong github.com/n3il666

EDUCATION

Princeton University	<i>08/2023 - Present</i>
<i>Degree</i> : Ph.D. in MAE (Robotics Track)	<i>cGPA</i> : 4.0/4.0
<i>Committee</i> : Christine Allen-Blanchette (<i>Chair</i>), Felix Heide, Ryan P. Adams	
University of Toronto	<i>09/2018 - 06/2023</i>
<i>Degree</i> : B.A.Sc. in Engineering Science (with High Honour)	<i>cGPA</i> : 3.81/4.0
<i>Major</i> : Robotics Engineering	<i>Minor</i> : Artificial Intelligence
<i>Advisor</i> : Animesh Garg	

EXPERIENCE

CAB Lab , Princeton University	<i>2023 - Present</i>
<i>Graduate Research Student, Advisor: Prof. Christine Allen-Blanchette</i>	
Topics: physics- and geometry-aware deep learning for scientific discovery [U2, U3], generative dexterous manipulation [C4, C5], and multi-agent control [U1]	
People, AI, & Robots Lab , Vector Institute & University of Toronto	<i>2022 - 2023</i>
<i>Undergraduate Research Student, Advisor: Prof. Animesh Garg</i>	
Topics: differentiable physics for dexterous grasp synthesis [C2]	
Noah's Ark Lab , Huawei Research Canada	<i>2021 - 2022</i>
<i>Machine Learning Research Intern, Advisor: Prof. Yang Wang</i>	
Topics: OOD generalization via prompt learning [C3] and test-time adaptation [C1] for foundation models	
aUToronto , The University of Toronto Self-Driving Car Team	<i>2020 - 2022</i>
<i>Mapping & Localization Team Lead, Team Advisors: Prof. Tim Barfoot, Prof. Steven Waslander, Prof. Angela Schoellig, Prof. Jonathan Kelly</i>	
Topics: semantic mapping and SLAM optimization for autonomous driving.	
Shenzhen Institute of Artificial Intelligence and Robotics for Society , CUHK(SZ)	<i>2020</i>
<i>Visiting Research Student, Advisor: Prof. Huihuan Qian</i>	
Topics: web-based testing platform, state estimation, and control for marine robotics	

PUBLICATIONS

* denotes equal contribution.

Papers in Submission

- [U3] **Tao Zhong**, Yixun Hu, Dongzhe Zheng, Aditya Sood, Christine Allen-Blanchette. Neural Field Thermal Tomography: A Differentiable Physics Framework for Non-Destructive Evaluation. *Under Review*, 2026.
- [U2] Dongzhe Zheng, **Tao Zhong**, Christine Allen-Blanchette. Topology-Preserving Neural Operator Learning via Hodge Decomposition. *Under Review*, 2026.
- [U1] Keqin Wang*, **Tao Zhong***, David Chang, Christine Allen-Blanchette. Local-Canonicalization Equivariant Graph Neural Networks for Sample-Efficient and Generalizable Swarm Robot Control. *Preprint*, 2025.

Refereed Conference Proceedings

- [C5] **Tao Zhong**, Jonah Buchanan, Christine Allen-Blanchette. Grasp2Grasp: Vision-Based Dexterous Grasp Translation via Schrödinger Bridges. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2025.
- [C4] **Tao Zhong** and Christine Allen-Blanchette. GAGrasp: Geometric Algebra Diffusion for Dexterous Grasping. In *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, 2025.
- [C3] Zhixiang Chi*, Li Gu*, **Tao Zhong**, Huan Liu, Yuanhao Yu, Konstantinos N Plataniotis, Yang Wang. Adapting to Distribution Shift by Visual Domain Prompt Generation. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2024.

[C2] Dylan Turpin, **Tao Zhong**, Shutong Zhang, Guanglei Zhu, Eric Heiden, Miles Macklin, Stavros Tsogkas, Sven Dickinson, Animesh Garg. Fast-Grasp'D: Dexterous Multi-finger Grasp Generation Through Differentiable Simulation. In *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, 2023.

[C1] **Tao Zhong***, Zhixiang Chi*, Li Gu*, Yang Wang, Yuanhao Yu, Jin Tang. Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

Refereed Non-archival Publications

[W1] **Tao Zhong** and Christine Allen-Blanchette. Geometric Algebra Grasp Diffusion for Dexterous Manipulators. In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop on Equivariant Robotics*, 2024.

Patents

[P1] Zhixiang Chi, Li Gu, **Tao Zhong**, Yuanhao Yu, Yang Wang, Jin Tang. Systems and Methods for Artificial-intelligence Model Training Using Unsupervised Domain Adaptation with Multi-source Meta-distillation. *US Patent Application No. 17/966,568*.

AWARDS & HONORS

Princeton MAE Second Year Departmental Fellowship (2 / 25+)	2024
Princeton University First Year Fellowship in Natural Sciences and Engineering	2023
NeurIPS 2022 Scholar Award	2022
SAE Autodrive Challenge: 1st Place Winner (As a team)	2020, 2021, 2022
University of Toronto Dean's Honours List (All 8 terms)	2018 - 2023

INVITED TALKS

Vision-Based Dexterous Grasp Translation via Schrödinger Bridges
GRASP Lab, UPenn, Oct 2025

TEACHING

MAE 206 Introduction to Engineering Dynamics (Undergraduate)	<i>Spring 2026</i>
Teaching Assistant, Princeton University	
MAE 433 Automatic Control Systems (Undergraduate)	<i>Fall 2025</i>
Teaching Assistant, Princeton University	

MENTORING

Jonah Buchanan (with Christine Allen-Blanchette)	2024 - 2025
David Chang (with Christine Allen-Blanchette and Kevin Wang)	2024 - 2025
Kaison Fong (with Christine Allen-Blanchette)	2025

SERVICE

Conference Refereeing	
International Conference on Machine Learning (ICML)	2026
Neural Information Processing Systems (NeurIPS)	2025
International Conference on Learning Representations (ICLR)	2025 - 2026
Annual Learning for Dynamics & Control Conference (L4DC)	2024, 2026

Journal Refereeing	
IEEE Robotics and Automation Letters (RA-L)	2025
Transactions on Machine Learning Research (TMLR)	2025

SKILLS

Programming Languages:	Python, C/C++, MATLAB/Simulink, Bash, SQL, Assembly
Libraries & Tools:	PyTorch, NumPy, OpenCV, scikit-learn, ROS, Git, Docker, L ^A T _E X